
4 The Architecture of Mind: A Connectionist 
Approach 

David E. Rumelhart 

Cognitive science has a long- standing and important relationship to the 
computer. The computer has provided a tool whereby we have been 
able to express our theories of mental activity; it has been a valuable 
source of metaphors through which we have come to under stand and 
appreciate how mental activities might arise out of the operations of 
simple-component processing elements. 

I recall vividly a class I taught some fifteen years ago in which I 
outlined the then-current view of the cognitive system. A particul arly 
skeptical student challenged my account with its reliance on concepts 
drawn from computer science and artificial intelligence with the ques­
tion of whether I thought my theories would be different if it had 
happ ened that our computers were parallel instead of serial. My re­
sponse, as I recall, was to concede that our theorie s might very well be 
different, but to argue that that wasn't a bad thing. I pointed out that 
the inspiration for our theorie s and our understanding of abstract phe­
nom ena always is based on our experience with the technology of the 
time. I point ed out that Aristotle had a wax tablet theory of memory, 
that Leibniz saw the universe as clockworks, that Freud used a hydra ulic 
mod el of libido flowing through th e system, and that the telephone­
switchboard model of intelligence had played an important role as well. 
The theorie s posited by those of previous generations had, I suggested, 
been useful in spite of the fact that they were based on the metaphors 
of th eir time. Therefore, I argued, it was natural that in our generation­
the gener ation of the serial computer-we should draw our insight s 
from analogies with the most advanced technological development s of 
our time. I don ' t now remember whether my response satisfied the 
s tud ent , but I have no doubt that we in cognitive science have gained 
much of value through our use of concepts drawn from our experience 
with the computer. 

In addition to its value as a source of metaphors , the computer differs 
from earlier techno logies in another remarkable way . The computer can 
be made to simulate sys tems whose operations are very different from 
the computers on which these simulatio ns run. In this way we can use 
the computer to simulate systems with which we wish to have experi-
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ence and thereby provide a source of experience that can be drawn 
upon in giving us new metaphors and new insights into how mental 
operations might be accomplished. It is this use of the computer that 
the connectionists have employed. The architecture that we are explor­
ing is not one based on the von Neumann architecture of our current 
generation of computers but rather an architecture based on consider­
ations of how brains themselves might function . Our strategy has thus 
become one of offering a general and abstract model of the computa­
tional architecture of brains, to develop algorithms and procedures well 
suited to this architecture, to simulate these procedures and architecture 
on a computer, and to explore them as hypotheses about the nature of 
the human information-processing system. We say that such models 
are neurally inspired, and we call computation on such a system brain­
style computation. Our goal in short is to replace the computer metaphor 
with the brain metaphor. 

4.1 Why Brain-Style Computati on? 

Why should a brain-style computer be an especially interesting source 
of inspiration? Implicit in the adoption of the computer metaphor is an 
assumption about the appropriate level of explanation in cognitive sci­
ence. The basic assumption is that we should seek explanation at the 
program or functional level rather than the implementational level. It is 
thus often pointed out that we can learn very little about what kind of 
program a particular computer may be running by looking at the elec­
tronics. In fact we don ' t care much about the details of the computer 
at all; all we care about ·is the particular program it is running. If we 
know the program, we know how the system will behave in any situ­
ation. It doesn ' t matter whether we use vacuum tubes or transistors, 
whether we use an IBM or an Apple, the essential characteristics are 
the same . This is a very misleading analogy. It is true for computers 
because they are all essentially the same. Whether we make them out 
of vacuum tubes or transistors , and whether we use an IBM or an Apple 
computer, we are using computers of the same general design. When 
we look at essentially different architecture, we see that the architecture 
makes a good deal of difference. It is the architecture that determines 
which kinds of algorithms are most easily carried out on the machine 
in question . It is the architecture of the machine that determines the 
essential nature of the program itself. It is thus reasonable that we 
should begin by asking what we know about the architecture of the 
brain and how it might shape the algorithms underlying biological 
intelligence and human mental life. 

The basic strategy of the connectionist approach is to take as its 
fundamental processing unit something close to an abstract neuron. We 
imagine that computation is carried out through simple interactions 
among such processing units. Essentially the idea is that these process-
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ing elements communicate by sending numbers along the lines that 
connect the processing elements. This identification already provides 
some interesting constraints on the kinds of algorithms that might 
underlie human intelligence . 

The operations in our models then can best be characterized as "neur­
ally inspired." How does the replacement of the computer metaphor 
with the brain metaphor as model of mind affect our thinking? This 
change in orientation leads us to a number of considerations that further 
inform and constrain our model-building efforts. Perhaps the most 
crucial of these is time. Neurons are remarkably slow relative to com­
ponents in modern computers. Neurons operate in the time scale of 
milliseconds, whereas computer components operate in the time scale 
of nanoseconds-a factor of 106 faster. This means that human processes 
that take on the order of a second or less can involve only a hundred 
or so time steps. Because most of the processes we have studied­
perception, memory retrieval, speech processing, sentence comprehen­
sion, and the like-take about a second or so, it makes sense to impose 
what Feldman (1985) calls the "100-step program" constraint. That is, 
we seek explanations for these mental phenomena that do not require 
more than about a hundred elementary sequential operations. Given 
that the processes we seek to characterize are often quite complex and 
may involve consideration of large numbers of simultaneous con­
straints, our algorithms must involve considerable parallelism. Thus 
although a serial computer could be created out of the kinds of com­
ponents represented by our units, such an implementation would surely 
violate the 100-step program constraint for any but the simplest pro­
cesses. Some might argue that although parallelism is obviously present 
in much of human information processing, this fact alone need not 
greatly modify our world view. This is unlikely. The speed of compo­
nents is a critical design constraint. Although the brain has slow com­
ponents, it has very many of them. The human brain contains billions 
of such processing elements. Rather than organize computation with 
many, many serial steps, as we do with systems whose steps are very 
fast, the brain must deploy many, many processing elements coopera­
tively and in parallel to carry out its activities. These design character­
istics, among others, lead, I believe, to a general organization of 
computing that is fundamentally different from what we are used to. 

A further consideration differentiates our models from those inspired 
by the computer metaphor-that is, the constraint that all the knowl­
edge is in the connections. From conventional programmable computers 
we are used to thinking of knowledge as being stored in the state of 
certain units in the system. In our systems we assume that only very 
short-term storage can occur in the states of units; long-term storage 
takes place in the connections among units. Indeed it is the connec­
tions--or perhaps the rules for forming them through experience-that 
primarily differentiate one model from another. This is a profound 
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difference between our approach and other more conventional ap­
proaches, for it means that almost all knowledge is implicit in the struc­
ture of the device that carries out the task rather than explicit in the 
states of units themselves. Knowledge is not directly accessible to in­
terpretation by some separate processor, but it is built into the processor 
itself and directly determines the course of processing. It is acquired 
through tuning of connections as these are used in processing, rather 
than formulated and stored as declarative facts. 

These and other neurally inspired classes of working assumptions 
have been one important source of assumptions underlying the con­
nectionist program of research . These have not been the only consid­
erations. A second class of constraints arises from our beliefs about the 
nature of human information processing considered at a more abstract, 
computational level of analysis. We see the kinds of phenomena we 
have been studying as products of a kind of constraint-satisfaction 
procedure in which a very large number of constraints act simulta­
neously to produce the behavior. Thus we see most behavior not as the 
product of a single, separate component of the cognitive system but as 
the product of large set of interacting components, each mutually con­
straining the others and contributing in its own way to the globally 
observable behavior of the system . It is very difficult to use serial 
algorithms to implement such a conception but very natural to use 
highly parallel ones. These problems can often be characterized as best­
match or optimization problems. As Minsky and Papert (1969) have 
pointed out, it is very difficult to solve best-match problems serially. 
This is precisely the kind of problem, however, that is readily imple­
mented using highly parallel algorithms of the kind we have been 
studying. 

The use of brain-style computational systems, then, offers not only a 
hope that we can characterize how brains actually carry out certain 
information-processing tasks but also solutions to computational prob­
lems that seem difficult to solve in more traditional computational 
frameworks. It is here where the ultimate value of connectionist systems 
must be evaluated. 

In this chapter I begin with a somewhat more formal sketch of the 
computational framework of connectionist models . I then follow with 
a general discussion of the kinds of computational problems that con­
nectionist models seem best suited for. Finally, I will briefly review the 
state of the art in connectionist modeling. 

The Connectionist Framework 
There are seven major components of any connectionist system: 

· a set of processing units; 

· a state of activation defined over the processing units; 
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· an output function for each unit that maps its state of activation into an 
output; 

· a pattern of connectivity among units; 

· an activation rule for combining the inputs impinging on a unit with 
its current state to produce a new level of activation for the unit ; 

· a learning rule whereby patterns of connectivity are modified by 
experience; 

· an environment within which the system must operate. 

Figure 4.1 illustrates the basic aspects of these systems. There is a set 
of processing unit s, generally indicated by circles in my diagrams; at 
each point in time each unit u; has an activation value, denoted in the 
diagram as a; (t); this activation value is passed through a function/; to 
produce an output value o;(t). This output value can be seen as passing 
through a set of unidirectional connections (indicated by lines or arrows 
in the diagrams) to other units in the system. There is associated with 
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each connection a real number, usually called the weight or strength of 
the connection, designated W;j , which determines the affect that the first 
unit has on the second. All of the inputs must then be combined, and 
the combined inputs to a unit (usually designated the net input to the 
unit) along with its current activation value determine its new activation 
value via a function F. These systems are viewed as being plastic in the 
sense that the pattern of interconnections is not fixed for all time; rather 
the weights can undergo modification as a function of experience. In 
this way the system can evolve. What a unit represents can change 
with experience, and the system can come to perform in substantially 
different ways . 

A Set of Processing Units Any connectionist system begins with a set 
of processing units. Specifying the set of processing units and what 
they represent is typically the first stage of specifying a connectionist 
model. In some systems these units may represent particular conceptual 
objects such as features, letters, words, or concepts; in others they are 
simply abstract elements over which meaningful patterns can be de­
fined. When we speak of a distributed representation, we mean one in 
which the units represent small, featurelike entities we call microfeatures. 
In this case it is the pattern as a whole that is the meaningful level of 
analysis. This should be contrasted to a one-unit-one-concept or localist 
representational system in which single units represent entire concepts 
or other large meaningful entities . 

All of the processing of a connectionist system is carried out by these 
units. There is no executive or other overseer. There are only relatively 
simple units, each doing its own relatively simple job. A unit's job is 
simply to receive input from its neighbors and , as a function of the 
inputs it receives, to compute an output value, which it sends to its 
neighbors. The system is inherently parallel in that many units can 
carry out their computations as the same time . 

Within any system we are modeling, it is useful to characterize three 
types of units: input, output, and hidden units. Input units receive inputs 
from sources external to the system under study . These inputs may be 
either sensory inputs or inputs from other parts of the processing sys­
tem in which the model is embedded. The output units send signals 
out of the system . They may either directly affect motoric systems or 
simply influence other systems external to the ones we are modeling. 
The hidden units are those whose only inputs and outputs are within 
the system we are modeling . They are not "visible" to outside systems. 

The State of Activation In addition to the set of units we need a 
representation of the state of the system at time t. This is primarily 
specified by a vector a(t), representing the pattern of activation over the 
set of processing units. Each element of the vector stands for the acti­
vation of one of the units. It is the pattern of activation over the set of 
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units that captures what the system is representing at any time. It is 
useful to see processing in the system as the evolution, through time, 
of a pattern of activity over the set of units. 

Different models make different assumptions about the activation 
values a unit is allowed to take on. Activation values may be continuous 
or discrete. If they are continuous, they may be unbounded or bounded. 
If they are discrete, they may take binary values or any of a small set 
of values. Thus in some models units are continuous and may take on 
any real number as an activation value. In other cases they may take 
on any real value between some minimum and maximum such as, for 
example, the interval (0,1]. When activation values are restricted to 
discrete values, they most often are binary . Sometimes they are re­
stricted to the values O and 1, where 1 is usually taken to mean that 
the unit is active and O is taken to mean that it is inactive. 

Output of the Units Units interact by transmitting signals to their 
neighbors. The strength of their signals and therefore the degree to 
which they affect their neighbors are determined by their degree of 
activation. Associated with each unit u; is an output function f;(a;(t)), 
which maps the current state of activation to an output signal o;(t). In 
some of our models the output level is exactly equal to the activation 
level of the unit. In this case f is the identity function f (x) = x. Some­
times f is some sort of threshold function so that a unit has no affect 
on another unit unless its activation exceeds a certain value. Sometimes 
the function f is assumed to be a stochastic function in which the output 
of the unit depends probabilistically on its activation values . 

The Pattern of Connectivity Units are connected to one another. It is 
this pattern of connectivity that constitutes what the system knows and 
determines how it will respond to any arbitrary input. Specifying the 
processing system and the knowledge encoded therein is, in a connec­
tionist model , a matter of specifying this pattern of connectivity among 
the processing units. 

In many cases we assume that each unit provides an additive contri­
bution to the input of the units to which it is connected. In such cases 
the total input to the unit is simply the weighted sum of the separate 
inputs from each of the individual units . That is, the inputs from all of 
the incoming units are simply multiplied by a weight and summed to 
get the overall input to that unit . In this case the total pattern of 
connectivity can be represented by merely specifying the weights for 
each of the connections in the system. A positive weight represents an 
excitatory input, and a negative weight represents an inhibitory input. 
It is often convenient to represent such a pattern of connectivity by a 
weight matrix W in which the entry W;j represents the strength and 
sens!:! of the connection from unit Uj to unit u;. The weight W;j is a 
positive number if unit Uj excites unit u;; it is a negative number if unit 
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u; inhibits unit u;; and it is O if unit u; has no direct connection to unit 
u;. The absolute value of W ij specifies the strength of the connection. 

The pattern of connectivity is very important. It is this pattern that 
determines what each unit represents. One important issue that may 
determine both how much information can be stored and how much 
serial processing the network must perform is the fan-in and fan-out of 
a unit. The fan-in is the number of elements that either excite or inhibit 
a given unit. The fan-out of a unit is the number of units affected 
directly by a unit. It is useful to note that in brains these numbers are 
relatively large. Fan-in and fan-out range as high as 100,000 in some 
parts of the brain. It seems likely that this large fan-in and fan-out 
allows for a kind of operation that is less like a fixed circuit and more 
statistical in character. 

Activation Rule We also need a rule whereby the inputs impinging 
on a particular unit are combined with one another and with the current 
state of the unit to produce a new state of activation . We need function 
F, which takes a(t) and the net inputs, net ; = L; W;;o;(t), and produces 
a new state of activation . In the simplest cases, when F is the identity 
function, we can write a(t + 1) = Wo(t) = net (t) . Sometimes F is a 
threshold function so that the net input must exceed some value before 
contributing to the new state of activation. Often the new state of 
activation depends on the old one as well as the current input. The 
function F itself is what we call the activation rule. Usually the function 
is assumed to be deterministic . Thus, for example, if a threshold is 
involved it may be that a;(t) = 1 if the total input exceeds some threshold 
value and equals O otherwise. Other times it is assumed that F is 
stochastic. Sometimes activations are assumed to decay slowly with 
time so that even with no external input the activation of a unit will 
simply decay and not go directly to zero. Whenever a;(t) is assumed to 
take on continuous values , it is common to assume that F is a kind of 
sigmoid function. In this case an individual unit can saturate and reach 
a minimum or maximum value of activation . 

Modifying Patterns of Connectivity as a Function of Experience 
Changing the processing or knowledge structure in a connectionist 
system involves modifying the patterns of interconnectivity. In principle 
this can involve three kinds of modifications: 

1. development of new connections; 

2. loss of existing connections; 

3. modification of the strengths of connections that already exist. 

Very little work has been done on (1) and (2). To a first order of 
approximation , however, (1) and (2) can be considered a special case of 
(3). Whenever we change the strength of connection away from zero to 
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some positive or negative value, it has the same effect as growing a 
new connection . Whenever we change the strength of a connection to 
zero, that has the same effect as losing an existing connection. Thus 
we have concentrated on rules whereby strengths of connections are 
modified through experience. 

Virtually all learning rules for models of this type can be considered 
a variant of the Hebbian learning rule suggested by Hebb (1949) in his 
classic book Organization of Behavior. Hebb's basic idea is this: If a unit 
u; receives a input from another unit u1, then, if both are highly active, 
the weight WiJ from u1 to u; should be strengthened. This idea has been 
extended and modified so that it can be more generally stated as 

8wiJ = g (a;(t),t;(t))h(oj(t),w;1), 

where t;(t) is a kind of teaching input to u;. Simply stated, this equation 
says that the change in the connection from u1 to u; is given by the 
product of a function g() of the activation of u; and its teaching input t; 

and another function h() of the output value of u1 and the connection 
strength w;1. In the simplest versions of Hebbian learning, there is no 
teacher and the functions g and h are simply proportional to their first 
arguments. Thus we have 

where E is the constant of proportionality representing the learning 
rate . Another common variation is a rule in which h(oj(t),w;1) = 01(t) and 
g(a;(t),t ;(t)) = e(t;(t) - a;(t)). This is often called the Widrow-Hoff, because 
it was originally formulated by Widrow and Hoff (1960), or the delta 
rule, because the amount of learning is proportional to the difference (or 
delta) between the actual activation achieved and the target activation 
provided by a teacher. In this case we have 

This is a generalization of the perceptron learning rule for which the 
famous perception convergence theorem has been proved . Still another 
variation has 

8w;1 = ea;(t)(o;(t) - W;1). 

This is a rule employed by Grossberg (1976) and others in the study of 
competitive learning. In this case usually only the units with the strongest 
activation values are allowed to learn. 

Representation of the environment It is crucial in the development of 
any model to have a clear representation of the environment in which 
this model is to exist. In connectionist models we represent the envi­
ronment as a time-varying stochastic function over the space of input 
patterns. That is, we imagine that at any point in time there is some 
probability that any of the possible set of input patterns is impinging 
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on the input units. This probability function may in general depend on 
the history of inputs to the system as well as outputs of the system. In 
practice most connectionist models involve a much simpler characteri­
zation of the environment. Typically the environment is characterized 
by a stable probability distribution over the set of possible input patterns 
independent of past inputs and past responses of the system. In this 
case we can imagine listing the set of possible inputs to the system and 
numbering them from 1 to M. The environment is then characterized 
by a set of probabilities p; for i = l, ... , M. Because each input pattern 
can be considered a vector, it is sometimes useful to characterize those 
patterns with nonzero probabilities as constituting orthogonal or linearly 
independent sets of vectors. 

To summarize, the connectionist framework consists not only of a 
formal language but also a perspective on our models. Other qualitative 
and quantitative considerations arising from our understanding of brain 
processing and of human behavior combine with the formal system to 
form what might be viewed as an aesthetic for our model-building 
enterprises. 

Computational Features of Connectionist Models 
In addition to the fact that connectionist systems are capable of exploit­
ing parallelism in computation and mimicking brain-style computation, 
connectionist systems are important because they provide good solu­
tions to a number of very difficult computational problems that seem 
to arise often in models of cognition. In particular they are good at 
solving constraint-satisfaction problems, implementing content-ad­
dressable memory-storage systems, and implementing best match; they 
allow for the automatic implementation of similarity-based generaliza­
tion; they exhibit graceful degradation with damage or information 
overload; and there are simple, general mechanisms for learning that 
allow connectionist systems to adapt to their environments. 

Constraint Satisfaction Many cognitive-science problems are usefully 
conceptualized as constraint-satisfaction problems in which a solution 
is given through the satisfaction of a very large number of mutually 
interacting constraints. The problem is to devise a computational algo­
rithm that is capable of efficiently implementing such a system. Con­
nectionist systems are ideal for implementing such a constraint­
satisfaction system , and the trick for getting connectionist networks to 
solve difficult problems is often to cast the problem as a constraint­
satisfaction problem . In this case we conceptualize the connectionist 
network as a constraint network in which each unit represents a hypoth­
esis of some sort (for example, that a certain semantic feature, visual 
feature, or acoustic feature is present in the input) and in which each 
connection represents constraints among the hypotheses. Thus, for 
example, if feature B is expected to be present whenever feature A is 
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present, there should be a positive connection from the unit correspond­
ing to the hypothesis that A is present to the unit representing the 
hypothesis that Bis present. Similarly if there is a constraint that when­
ever A is present B is expected not to be present, there should be a 
negative connection from A to 8. If the constraints are weak, the weights 
should be small. If the constraints are strong, then the weights should 
be large. Similarly the inputs to such a network can also be thought of 
as constraints. A positive input to a particular unit means that there is 
evidence from the outside that the relevant feature is present. A nega­
tive input means that there is evidence from the outside that the feature 
is not present. The stronger the input, the greater the evidence. If such 
a network is allowed to run , it will eventually settle into a locally optimal 
state in which as many as possible of the constraints are satisfied, with 
priority given to the strongest constraints. (Actually, these systems will 
find a locally best solution to this constraint satisfaction problem. Global 
optima are more difficult to find.) The procedure whereby such a system 
settles into such a state is called relaxation. We speak of the system 
relaxing to a solution. Thus a large class of connectionist models contains 
constraint satisfaction models that settle on locally optimal solutions 
through the process of relaxation. 

Figure 4.2 shows an example of a simple 16-unit constraint network. 
Each unit in the network represents a hypothesis concerning a vertex 
in a line drawing of a Necker cube. The network consists of two inter­
connected subnetworks-one corresponding to each of the two global 
interpretations of the Necker cube . Each unit in each network is as­
sumed to receive input from the region of the input figure--the cube-­
corresponding to its location in the network. Each unit in figure 4.2 is 
labeled with a three-letter sequence indicating whether its vertex is 
hypothesized to be front or back (For 8), upper or lower (U or L), and 
right or left (R or L). Thus, for example, the lower-left unit of each 
subnetwork is assumed to receive input from the lower-left vertex of 
the input figure. The unit in the left network represents the hypothesis 
that it is receiving input from a lower-left vertex in the front surface of 
the cube (and is thus labeled FLL), whereas the one in the right sub­
network represents the hypothesis that it is receiving input from a 
lower-left vertex in the back surface (BLL). Because there is a constraint 
that each vertex has a single interpretation, these two units are con­
nected by a strong negative connection. Because the interpretation of 
any given vertex is constrained by the interpretations of its neighbors, 
each unit in a subnetwork is connected positively with each of its 
neighbors within the network. Finally there is the constraint that there 
can be only one vertex of a single kind (for example, there can be only 
one lower-left vertex in the front plane FLL). There is a strong negative 
connection between units representing the same label in each subnet­
work. Thus each unit has three neighbors connected positively, two 
competitors connected negatively, and one positive input from the stim-
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Figure 4.2 A simple network repre senting som e constraints involved in perc eiving a 
Ne cker cube 

ulus. For purposes of this example the strengths of connections have 
been arranged so that two negative inputs exactly balance three positive 
inputs. Further it is assumed that each unit receives an excitatory input 
from the ambiguous stimulus pattern and that each of these excitatory 
influences is relatively small. Thus if all three of a unit ' s neighbors are 
on and both of its competitors are on, these effects would entirely cancel 
out one another; and if there were a small input from the outside, the 
unit would have a tendency to come on. On the other hand if fewer 
than three of its neighbors were on and both of its competitors were 
on, the unit would have a tendency to turn off, even with an excitatory 
input from the stimulus pattern. 

In the preceding paragraph I focused on the individual units of the 
networks. It is often useful to focus not on the units, however, but on 
entire states of the network. In the case of binary (on-off or 0-1) units, 
there is a total of 216 possible states in which this system could reside. 
That is, in principle each of the 16 units could have either value O or 1. 
In the case of continuous units, in which each unit can take on any 
value between O and 1, the system can in principle take on any of an 
infinite number of states. Yet because of the constraints built into the 
network, there are only a few of those states in which the system will 
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settle. To see this, consider the case in which the unit s are updated 
asynchronously, one at a time. During each time slice one of the units 
is chosen to update. If its net input exceeds 0, its value will be pushed 
toward l; otherwise its value will be pushed toward 0. 

Imagine that the system starts with all units off. A unit is then chosen 
at random to be updated. Because it is receiving a slight positive input 
from the stimulus and no other inputs, it will be given a positive 
activation value. Then another unit is chosen to update. Unless it is in 
direct competition with the first unit, it too will be turned on. Eventually 
a coalition of neighboring units will be turned on. These units will tend 
to turn on more of their neighbors in the same subnetwork and turn 
off their competitors in the other subnetwork. The system will (almost 
always) end up in a situation in which all of the units in one subnetwork 
are fully activated and none of the units in the other subnetwork is 
activated. That is, the system will end up interpreting the Necker cube 
as either facing left or facing right. Whenever the system gets into a 
state and stays there, the state is called a stable state or a fixed point of 
the network. The constraints implicit in the pattern of connections 
among the units determine the set of possible stable states of the system 
and therefore the set of possible interpretations of the inputs. 

Hopfield (1982) has shown that it is possible to give a general account 
of th e behavior of systems such as this one (with symmetric weights 
and asynchronous updates). In particular Hopfield has shown that such 
systems can be conceptualized as minimizing a global measure, which 
he calls the energy of the system, through a method of gradient descent 
or, equivalently, maximizing the constraints satisfied through a method 
of hill climbing. In particular Hopfield has shown that the system oper­
ates in such a way as to always move from a state that satisfies fewer 
constraints to a state that satisfies more constraints, where the measure 
of constraint satisfaction is given by 

G(t) = L L W;f1;(t)aj(t) + L input ;(t)a;(t). 
; j ; 

Essentially the equation says that the overall goodness of fit is given by 
the sum of the degrees to which each pair of units contributes to the 
goodness plus the degree to which the units satisfy the input con­
straints. The contribution of a pair of units is given by the product of 
their activation values and the weights connecting them. Thus if the 
weight is positive , each unit wants to be as active as possible - that is, 
the activation values for these two units should be pushed toward l. If 
the weight is negative, then at least one of the units should be O to 
maximize the pairwise goodness. Similarly if the input constraint for a 
given unit is po sitive, then its contribution to the total goodness of fit 
is maximized by being the activation of that unit toward its maximal 
value. If it is negative, the activation value should be decreased toward 
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0. Of course the constraints will generally not be totally consistent. 
Sometimes a given unit may have to be turned on to increase the 
function in some ways yet decrease it in other ways. The point is that 
it is the sum of all of these individual contributions that the system 
seeks to maximize . Thus for every state of the system-every possible 
pattern of activation over the units-the pattern of inputs and the 
connectivity matrix W determine a value of the goodness-of-fit function. 
The system processes its input by moving upward from state to adjacent 
state until it reaches a state of maximum goodness. When it reaches 
such a stable state or fixed point, it will stay in that state and it can be 
said to have "settled" on a solution to the constraint-satisfaction prob­
lem or alternatively, in our present case, "settled into an interpretation" 
of the input. 

It is important to see then that entirely local computational operations, 
in which each unit adjusts its activation up or down on the basis of its 
net input, serve to allow the network to converge toward states that 
maximize a global measure of goodness or degree of constraint satisfac­
tion. Hopfield's main contribution to the present analysis was to point 
out this basic fact about the behavior of networks with symmetrical 
connections and asynchronous update of activations. 

To summarize, there is a large subset of connectionist models that 
can be considered constraint-satisfaction models. These networks can 
be described as carrying out their information processing by climbing 
into states of maximal satisfaction of the constraints implicit in the 
network. A very useful concept that arises from this way of viewing 
these networks is that we can describe the behavior of these networks 
not only in terms of the behavior of individual units but also in terms 
of properties of the network itself. A primary concept for understanding 
these network properties is the goodness-of-fit landscape over which the 
system moves. Once we have correctly described this landscape, we 
have described the operational properties of the system-it will process 
information by moving uphill toward goodness maxima. The particular 
maximum that the system will find is determined by where the system 
starts and by the distortions of the space induced by the input. One of 
the very important descriptors of a goodness landscape is the set of 
maxima that the system can find, the size of the region that feeds into 
each maximum, and the height of the maximum itself. The states them­
selves correspond to possible interpretations, the peaks in the space 
correspond to the best interpretations, the extent of the foothills or 
skirts surrounding a particular peak determines the likelihood of finding 
the peak, and the height of the peak corresponds to the degree to which 
the constraints of the network are actually met or alternatively to the 
goodness of the interpretation associated with the corresponding state. 

Interactive Processing One of the difficult problems in cognitive sci­
enc.e is to build systems that are capable of allowing a large number of 
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knowledge sources to usefully interact in the solution of a problem. 
Thus in language processing we would want syntactic, phonological, 
semantic, and pragmatic knowledge sources all to interact in the con­
struction of the meaning of an input. Reddy and his colleagues (1973) 
have had some success in the case of speech perception with the Hear­
say system because they were working in the highly structured domain 
of language . Less structured domains have proved very difficult to 
organize. Connectionist models , conceptualized as constraint-satisfac­
tion networks , are ideally suited for the blending of multiple-knowledge 
sources. Each knowledge type is simply another constraint , and the 
system will, in parallel , find those figurations of values that best satisfy 
all of the constraints from all of the knowledge sources. The uniformity 
of representation and the common currency of interaction (activation 
values) make connectionist systems especially powerful for this domain. 

Rapid Pattern Matching, Best-Match Search, Content-Addressable 
Memory Rapid pattern matching, best-match search, and content­
addressable memory are all variants on the general best-match problem 
(compare Minsky and Papert 1969). Best-match problems are especially 
difficult for serial computational algorithms (it involves exhaustive 
search), but as we have just indicated connectionist systems can readily 
be used to find the interpretation that best matches a set of constraints. 
It can similarly be used to find stored data that best match some target. 
In this case it is useful to imagine that the network consists of two 
classes of units, with one class, the visible units , corresponding to the 
content stored in the network, and the remaining, hidden units are used 
to help store the patterns. Each visible unit corresponds to the hypoth ­
esis that some particular feature was present in the stored pattern. Thus 
we think of the content of the stored data as consisting of collections 
of features. Each hidden unit corresponds to a hypothesis concerning 
the configuration of features present in a stored pattern. The hypothesis 
to which a particular hidden unit corresponds is determined by the 
exact learning rule used to store the input and the characteristics of the 
ensemble of stored patterns. Retrieval in such a network amounts to 
turning on some of the visible units (a retrieval probe) and letting the 
system settle to the best interpretation of the input. This is a kind of 
pattern completion. The details are not too important here because a 
variety of learning rules lead to networks with the following important 
properties: 

· When a previously stored (that is, familiar) pattern enters the memory 
system, it is amplified, and the system responds with a stronger version 
of the input pattern. This is a kind of recognition response. 

· When an unfamiliar pattern enters the memory system, it is damp ­
ened , and the activity of the memory system is shut down. This is a 
kind of unfamiliarity response. 
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· When part of a familiar pattern is presented, the system responds by 
"filling in" the missing parts. This is a kind of recall paradigm in which 
the part constitutes the retrieval cue, and the filling in is a kind of 
memory-reconstruction process. This is a content-addressable memory 
system. 
· When a pattern similar to a stored pattern is presented, the system 
responds by distorting the input pattern toward the stored pattern. This 
is a kind of assimilation response in which similar inputs are assimilated 
to similar stored events. 

· Finally, if a number of similar patterns have been stored, the system 
will respond strongly to the central tendency of the stored patterns, 
even though the central tendency itself was never stored. Thus this sort 
of memory system automatically responds to prototypes even when no 
prototype has been seen. 

These properties correspond very closely to the characteristics of human 
memory and, I believe, are exactly the kind of properties we want in 
any theory of memory. 

Automatic Generalization and Direct Representation of Similarity 
One of the major complaints against AI programs is their "fragility." 
The programs are usually very good at what they are programmed to 
do, but respond in unintelligent or odd ways when faced with novel 
situations. There seem to be at least two reasons for this fragility . In 
conventional symbol-processing systems similarity is indirectly repre­
sented and therefore are generally incapable of generalization, and most 
AI programs are not self-modifying and cannot adapt to their environ­
ment. In our connectionist systems on the other hand, the content is 
directly represented in the pattern and similar patterns have similar 
effects-therefore generalization is an automatic property of connec­
tionist models. It should be noted that the degree of similarity between 
patterns is roughly given by the inner product of the vectors repre­
senting the patterns. Thus the dimensions of generalization are given 
by the dimensions of the representational space. Often this will lead to 
the right generalizations. There are situations in which this will lead to 
inappropriate generalizations. In such a case we must allow the system 
to learn its appropriate representation. In the next section I describe 
how the appropriate representation can be learned so that the correct 
generalizations are automatically made . · 

Learning A key advantage of the connectionist systems is the fact that 
simple yet powerful learning procedures can be defined that allow the 
systems to adapt to their environment. It was work on the learning 
aspect of these neurally inspired models that first led to an interest in 
them (compare Rosenblatt, 1962), and it was the demonstration that 
the learning procedures for complex networks could never be developed 
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that contributed to the Joss of interest (compare Minsky and Papert 
1969). Although the perceptron convergence procedure and its variants have 
been around for some time, these learning procedures were limited to 
simple one-layer networks involving only input and output units. There 
were no hidden units in these cases and no internal representation. The 
coding provided by the external world had to suffice. Nevertheless these 
networks have proved useful in a wide variety of applications. Perhaps 
the essential character of such networks is that they map similar input 
patterns to similar output patterns. This is what allows these networks 
to make reasonable generalizations and perform reasonably on patterns 
that have never before been presented. The similarity of patterns in the 
connectionist system is determined by their overlap. The overlap in 
such networks is determined outside the learning system itself-by 
whatever produces the patterns. 

The constraint that similar input patterns lead to similar outputs can 
lead to an inability of the system to learn certain mappings from input 
to output. Whenever the representation provided by the outside world 
is such that the similarity structure of the input and output patterns is 
very different, a network without internal representations (that is, a 
network without hidden units) will be unable to perform the necessary 
mappings. A classic example of this case is the exclusive-or (XOR) 
problem illustrated in table 4.1. Here we see that those patterns that 
overlap least are supposed to generate identical output values. This 
problem and many others like it cannot be performed by networks 
without hidden units with which to create their own internal represen­
tations of the input patterns. It is interesting to note that if the input 
patterns contained a third input taking the value 1 whenever the first 
two have value 1, as shown in table 4.2, a two-layer system would be 
able to solve the problem. 

Table 4.1 XOR Problem 

Input Patterns Output Patterns 

00 - 0 
01 - 1 
10 - 1 
11 - 0 

Table 4.2 XOR with Redundant Third Bit 

Input Patterns Output Patterns 

000 - 0 
010 - 1 
100 - 1 
111 - 0 
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Minsky and Papert (1969) have provided a careful analysis of condi­
tions under which such systems are capab le of carrying out the required 
mappings. They show that in many interesting cases networks of this 
kind are incapable of solving the problems. On the other hand, as 
Minsky and Papert also pointed out, if there is a layer of simple per­
ceptronlike hidden units , as shown in figure 4.3, with which the original 
input pattern can be augmented, there is always a recoding (that is, an 
internal representation) of the input patterns in the hidden units in 
which the similarity of the patterns among the hidden units can support 
any required mapping from the input to the output units . Thus if we 
have the right connections from the input units to a large enough set 
of hidden units, we can always find a representation that will perform 
any mapping from input to output through these hidden units. In the 
case of the XOR problem , the addition of a feature that detects the 
conjunction of the input units changes the similarity structure of the 
patterns sufficiently to allow the solution to be learned. As illustrated 
in figure 4.4, this can be done with a single hidden unit. The numbers 
on the arrows represent the strengths of the connections among the 
units. The numbers written in the circles represent the thresholds of 
the units . The value of + 1.5 for the threshold of the hidden unit ensures 
that it will be turned on only when both input units are on. The value 
0.5 for the output unit ensures that it will turn on only when it receives 

Output Patterns 

Input Patterns 

Internal 

Representation 
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Figure 4.3 A multilayer network in which input patterns are recoded by internal repre sen­

tation unit s 
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Hidden Unit 

Input Units 

Figure 4.4 A simple XOR network with one hidd en unit 

a net positive input greater than 0.5. The weight of - 2 from the hidden 
unit to the output unit ensures that the output unit will not come on 
when both input units are on. Note that from the point of view of the 
output unit the hidden unit is treated as simply another input unit . It 
is as if the input patterns consisted of three rather th an two units. 

The existence of networks such as this illustrates the potential power 
of hidden units and internal representations . The problem, as noted by 
Minsky and Papert, is that whereas there is a very simple guaranteed 
learning rule for all problems that can be solved without hidden units , 
namely, the perceptron convergence procedur e (or the variation re­
ported originally by Widrow and Hoff 1960), there has been no equally 
powerful rule for learning in multilayer networks. 

It is clear that if we hope to use these connectionist networks for 
general computational purposes , we must have a learning scheme ca­
pable of learning its own internal representation s. This is just what we 
(Rumelhart, Hinton, and Williams 1986) have done. We have developed 
a generalization of the perceptron learning procedure, called the gen­
eralized delta rule, which allows the system to learn to compute arbitrary 
function s. The constraints inherent in networks without self-modifying 
internal representations are no longer applicable. The basic learning 
procedure is a two-stage process. First , an input is applied to the net­
work ; then, after the system has processed for some time , certain units 
of the network are informed of the values the y ought to have at this 
time. If th ey hav e attained th e desired values, the weights are un­
changed. If they differ from the target values, then the weights are 
changed according to the difference between the actual value the units 
have attained and the target for those units. This difference becomes 
an error signal. This error signal must then be sent back to those units 
that impinged on the output unit s . Each such unit receives an error 
measure that is equal to the error in all of the units to which it connects 
times the weight connecting it to the output unit . Then, based on the 
error, the weights into these "second-layer" units are modified , after 
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which the error is passed back another layer. This process continues 
until the error signal reaches the input units or until it has been passed 
back for a fixed number of times. Then a new input pattern is presented 
and the process repeats . Although the procedure may sound difficult , 
it is actually quite simple and easy to implement within these nets. As 
shown in Rumelhart, Hinton, and Williams 1986, such a procedure will 
always change its weights in such a way as to reduce the difference 
between the actual output values and the desired output values. More­
over it can be shown that this system will work for any network 
whatsoever. 

Minsky and Papert (1969, pp. 231-232) , in their pes simistic discussion 
of perceptrons , discuss multilayer machines. They state that 

The perceptron has shown itself worthy of study despite (and even 
because of!) its severe limitations. It has many features that attract 
attention: its linearity; its intriguing learning theorem; its clear paradig­
matic simplicity as a kind of parallel computation. There is no reason 
to suppose that any of these virtues carry over to the many-layered 
version. Nevertheless, we consider it to be an important research prob­
lem to elucidate (or reject) our intuitive judgment that the extension is 
sterile. Perhaps some powerful convergence theorem will be discovered , 
or some profound reason for the failure to produce an interesting "learn­
ing theorem " for the multilayered machine will be found. 

Although our learning results do not guarantee that we can find a so­
lution for all solvable problems , our analyses and simulation results 
have shown that as a practical matter , this error propagation scheme 
leads to solutions in virtually every case. In short I believe that we have 
answered Minsky and Papert's challenge and have found a learning 
result sufficiently powerful to demonstrate that their pessimism about 
learning in multilayer machines was misplaced. 

One way to view the procedure I have been describing is as a parallel 
computer that, having been shown the appropriate input /output ex­
emplars specifying some function, programs itself to compute that func­
tion in general. Parallel computers are notoriously difficult to program. 
Here we have a mechanism whereby we do not actually have to know 
how to write the program to get the system to do it. 

Graceful Degradation Finally connectionist models are interesting can­
didates for cognitive-science models because of their property of grace­
ful degradation in the face of damage and informatior:t overload. The 
ability of our networks to learn leads to the promise of computers that 
can literally learn their way around faulty components because every 
unit participates in the storage of many patterns and because each 
pattern involves many different units, the loss of a few components 
will degrade the stored information , but will not lose it. Similarly such 
memories should not be conceptualized as having a certain fixed ca­
pacity. Rather there is simply more and more storage interference and 
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blending of similar pieces of information as the memory is overloaded. 
This property of graceful degradation mimics the human response in 
many ways and is one of the reasons we find these models of human 
information processing plausible. 

4.2 The State of the Art 

Recent years have seen a virtual explosion of work in the connectionist 
area. This work has been singularly interdisciplinary, being carried out 
by psychologists , phy sicists , computer scientists, engineers, neuros­
cientists, and other cognitive scientists. A number of national and in­
ternational conferences have been established and are being held each 
year. In such environment it is difficult to keep up with the rapidly 
developing field . Nevertheless a reading of recent papers indicates a 
few central themes to this activity. These themes include the study of 
learning and generalization (especially the use of the backpropagation 
learning procedure), applications to neuroscience, mathematical prop­
erties of networks-both in terms of learning and the question of the 
relationship among connectionist style computation and more conven­
tional computational paradigms-and finally the development of an 
implementational base for physical realizations of connectionist com­
putational devices, especially in the areas of optics and analog VLSI. 

Although there are many other interesting and important develop­
ments , I conclude with a brief summary of the work with which I have 
been most involved over the past several years, namely, the study of 
learning and generalization within multilayer networks. Even this sum­
mary is necessarily selective, but it should give a sampling of much of 
the current work in the area. 

Learning and Generalization 
The backpropagation learning procedure has become possibly the single 
most popular method for training networks. The procedure has been 
used to train networks on problem domains including character recog­
nition, speech recognition, sonar detection, mapping from spelling to 
sound, motor control, analysis of molecular structure, diagnosis of eye 
diseases , prediction of chaotic functions, playing backgammon, the 
parsing of simple sentences, and many, many more areas of application. 
Perhaps the major point of these examples is the enormous range of 
problems to which the backpropagation learning procedure can usefully 
be applied. In spite of the rather impressive breadth of topics and the 
success of some of these applications, there are a number of serious 
open problems. The theoretical issues of primary concern fall into three 
main areas: (1) The architecture problem-are there useful architectures 
beyond the standard three-layer network used in most of these areas 
that are appropriate for certain areas of application? (2) The scaling 
problem-how can we cut down on the substantial training time that 
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seems to be involved for the more difficult and interesting problem 
application areas? (3) The generalization problem-how can we be cer­
tain that the network trained on a subset of the example set will gen­
eralize correctly to the entire set of exemplars? 

Some Architecture 
Although most applications have involved the simple three-layer back­
propagation network with one input layer, one hidden layer, and one 
output layer of units, there have been a large number of interesting 
architectures proposed-each for the solution of some particular prob­
lem of interest. There are, for example, a number of "special" architec­
tures that have been proposed for the modeling of such sequential 
phenomena as motor control. Perhaps the most important of these is 
the one proposed by Mike Jordan (1986) for producing sequences of 
phonemes. The basic structure of the network is illustrated in figure 
4.5. It consists of four groups of units: Plan units, which tell the network 
which sequence it is producing, are fixed at the start of a sequence and 
are not changed. Context units, which keep track of where the system 
is in the sequence, receive input from the output units of the systems 
and from themselves, constituting a memory for the sequence produced 
thus far. Hidden units combine the information from the plan units with 
that from the context units to determine which output is to be produced 
next . Output units produce the desired output values. This basic struc­
ture, with numerous variations, has been used successfully in produc­
ing sequences of phonemes (Jordan 1986), sequences of movements 
(Jordan 1989), sequences of notes in a melody (Todd 1989), sequences 
of turns in a simulated ship (Miyata 1987), and for many other appli­
cations. An analogous network for recognizing sequences has been used 
by Elman (1988) for processing sentences one at a time, and another 
variation has been developed and studied by Mozer (1988). The archi­
tecture used by Elman is illustrated in figure 4.6. This network also 
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Figure 4.5 A recurrent network of the type developed by Jordan (1986) for learning to 
perform sequences 
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involves three sets of units: input units, in which the sequence to be 
recognized is presented one element at a time; a set of context units that 
receive inputs from and send inputs to the hidden units and thus 
constitute a memory for recent events; a set of hidden units that combine 
the current input with its memory of past inputs to either name the 
sequence, predict the next element of the sequence, or both. 

Another kind of architecture that has received some attention has 
been suggested by Hinton and has been employed by Elman and Zipser 
(1987), Cottrell, Munro, and Zipser (1987), and many others. It has 
become part of the standard toolkit of backpropagation . This is the so­
called method of autoencoding the pattern set. The basic architecture 
in this case consists of three layers of units as in the conventional case; 
however, the input and output layers are identical. The idea is to pass 
the input through a small number of hidden units and reproduce it 
over the output units. This requires the hidden units to do a kind of 
nonlinear-principle components analysis of the input patterns. In this 
case that corresponds to a kind of extraction of critical features. In many 
applications these features turn out to provide a useful compact descrip­
tion of the patterns. Many other architectures are being explored. The 
space of interesting and useful architecture is large and the exploration 
will continue for many years . 

The Scaling Problem 
The scaling problem has received somewhat less attention, although it 
has clearly emerged as a central problem with backpropagationlike 
learning procedures . The basic finding has been that difficult problems 
require many learning trials. For example, it is not unusual to require 
tens or even hundreds of thousands of pattern presentations to learn 
moderately difficult problems-that is, those whose solution requires 
tens of thousands to a few hundred thousand connections. Large and 
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Figure 4.6 A recurrent network of the type employed by Elman (1988) for learning to 
recognize sequences 
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fast computers are required for such problems, and it is impractical for 
problems requiring more than a few hundred thousand connections. It 
is therefore a matter of concern to learn to speed up the learning so 
that it can learn more difficult problems in a more reasonable number 
of exposures. The proposed solutions fall into two basic categories. One 
line of attack is to improve the learning procedure either by optimizing 
the parameters dynamically (that is, change the learning rate system­
atically during learning) or by using more information in the weight­
changing procedure (that is, the so-called second-order backpropagation 
in which the second derivatives are also computed). Although some 
improvements can be attained through the use of these methods , in 
certain problem domains the basic scaling problem still remains. It 
seems that the basic problem is that difficult problems require a large 
number of exemplars, however efficiently each exemplar is used. The 
other view grows from viewing learning and evolution as continuous 
with one another . On this view the fact that networks take a long time 
to learn is to be expected because we normally compare their behavior 
to organisms that have long evolutionary histories. On this view the 
solution is to start the system at places that are as appropriate as possible 
for the problem domain to be learned. Shepherd (1989) has argued that 
such an approach is critical for an appropriate understanding of the 
phenomena being modeled. 

A final approach to the scale problem is through modularity. It is 
possible to break the problem into smaller subproblems and train sub­
networks on these subproblems. Networks can then finally be assem ­
bled to solve the entire problem after all of the modules are trained. An 
advantage of the connectionist approach in this regard is that the orig­
inal training needs to be only approximately right . A final round of 
training can be used to learn the interfaces among the modules. 

The Generalization Problem 
One final aspect of learning that has been looked at is the nature of 
generalization. It is clear that the most important aspect of networks is 
not that they learn a set of mappings but that they learn the function 
implicit in the exemplars under study in such a way that they respond 
properly to those cases not yet observed. Although there are many 
cases of successful generalization (compare the learning of spelling with 
phoneme mappings in Sejnowski and Rosenberg's Nettalk (1987), there 
are a number of cases in which the networks do not generalize correctly 
(compare Denker et al. 1987). One simple way to understand this is to 
note that for most problems there are enough degrees of freedom in 
the network that there are a large number of genuinely different solu­
tions to the problems, and each solution constitutes a different way of 
generalizing to the unseen patterns. Clearly not all of these can be 
correct. I have proposed a hypothesis that shows some promise in 
promoting better generalization (Rumelhart 1988). The basic idea is this: 
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The problem of generalization is essentially the inducti on problem. 
Given a se t of observations, what is the appropriate principle that 
applies to all cases? Note tha t th e network at any point in time can be 
viewed as a specification of the inductive hypothesis . I have proposed 
that we follow a version of Occam 's razor and select the simplest, most 
robust netwo rk that is consistent with the observations made. The as­
sumption of robu stness is simply an embodiment of a kind of continuity 
assumption that small variations in the input pattern s should have little 
effect on the output and on the performan ce of the system. The sim­
plicity assumption is simply-of all network s that correctly account for 
th e input data - to choo se that net with the fewest hidd en unit s, fewest 
connections, mo st symmetries among the weights, and so on. I hav e 
formalized thi s procedure and modified the backpropagati on learnin g 
pro cedure so that it pr efers simple, robust network s and, all thing s 
being equal, will select tho se networks. In many cases it turns out that 
the se are just the networks that do the best job generalizing. 
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